< Back
ORIGIN 1.3.5

Scientific dating methods

Relative and Absolute

There are two main categories of dating methods in archaeology: relative dating and absolute dating.

Relative dating includes methods that rely on the analysis of comparative data or the context (eg, geological, regional,cultural) in which the object one wishes to date is found. This approach helps to order events chronologically but it does not provide the absolute age of an object expressed in years. Relative dating uses many techniques, but the most common are soil stratigraphy analysis and typology.

Absolute dating includes all methods that provide figures about the real estimated age of archaeological objects or occupations. These methods usually analyze physicochemical transformation phenomena whose rate are known or can be estimated relatively well. This is the only type that can clarifying the actual age of an object. Absolute dating methods mainly include radiocarbon dating, dendrochronology and thermoluminescence.

Relative Dating


Inspired by geology, stratigraphy uses the principle of the superposition of strata which suggests that, in a succession of undisturbed SOILS, the upper horizons are newer than the lower ones. Generally, each stratum is isolated in a separate chronological unit that incorporates artifacts. However, this method is sometimes limited because the reoccupation of an area may require excavation to establish the foundation of a building, for instance, that goes through older layers. In this case, even if the foundation of the building is found in the same stratigraphic level as the previous occupation, the two events are not contemporary.

Stratigraphic dating remains very reliable when it comes to dating objects or events in undisturbed stratigraphic levels. For example, the oldest human remains known to date in Canada, found at Gore Creek, have been dated using soil stratification. The bones were buried under (and are therefore older) a layer of ash that resulted from a volcanic eruption dating back to 7000 years. Subsequently, radiocarbon dating, an absolute dating technique, was used to date the bones directly and provided a date of 8250, showing how useful the combined use of relative and absolute dating can be.

Stratigraphic dating is sometimes based on the objects that are found within the soil strata. Some items whose exact or approximate age is known are called 'diagnostic artifacts.' Examples include very specific stone tools, different pottery styles, objects that belong to a specific period, coins with a production date, or other items bearing a trademark and whose history can be traced in historical records. Their presence on archaeological sites is used to date the soil layers and the objects and events they are associated with and thus contributes to refine the chronology of sites.


Typology is a method that compares reference objects in order to classify them according to their similarity or dissimilarity and link them to a specific context or period. This technique is frequently used when it is impossible to make use of absolute dating methods; it generally allows archaeologists to identify the period to which a cultural site or object belongs without specifying the date of occupation.

This method is primarily applied to projectile points and ceramic vessels. These present many characteristics that are used for comparing them, such as morphology and raw materials in the case of stone tools, and decorative techniques and motifs in the case of ceramics.

Absolute Dating

Radiocarbon Dating

Radiocarbon dating is the most widely used dating technique in archaeology. It relies on a natural phenomenon that is the foundation of life on earth.

Carbon 14 (14C) is formed from the reaction caused by cosmic rays that convert nitrogen into carbon 14 and then carbon dioxide by combining with carbon 12 (12C) and carbon 13 (13C ), which are stable carbon isotopes.

Following the death of an organism, any exchange ceases and the carbon 14, which is radioactive and therefore unstable, slowly begins to disintegrate at a known rate (half-life of 5730 years, i.e., after this period only half of the total carbon 14 present at the time of death remains).

The amount of carbon 14 remaining in the material to date is compared to a reference standard (ratio 14C/total carbon,12C and 13C) to calculate the time elapsed since its occurrence. A sample requires 10 to 20 grams of matter and usually consists of charred organic material, mainly charcoal, but bones and shells can also be dated using this technique.

An initial reading dates the specimen which is then calibrated by considering this date and its correspondence with the measurable level of carbon 14 stored over time in the growth rings of certain tree species, including redwood and pine bristol.

The results of radiocarbon dating are expressed in years and include a time range (eg, 630± 60 BP). Subsequently, the calibration of that date provides a time interval where the event or object being dated can be situated (e.g., 1275-1425 AD). Radiocarbon dating, however, can only be used for dating objects that are less than 50,000 years.


Dendrochronology is a method that studies the rings of tree trunks to define characteristic sequences by analyzing the morphology of growth rings for a given species. This method is based on the principle that the variation in tree growth from one year to another is influenced by the degree of precipitation, sunshine, temperature, soil type and all ambient conditions and that, consequently, reference patterns can be distinguished. Several sets of rings from different trees are matched to build an average sequence.

Subsequently, overlapping series of average sequences from trees that died at different times and come from various sources (ie, the wood of historic buildings, archaeological and fossil woods) are used to build a chronological sequence covering several hundred years which becomes a reference.

Finally, absolute dating is obtained by synchronizing the average sequences with series of live (and thus datable) trees and thus anchors the tree-ring chronology in time.

Dendrochronology mainly uses softwood species that are sensitive to changes in growth conditions, while hardwoods show rather little variation in ring width. This method provides very accurate dating, sometimes to the nearest year.


Thermoluminescence uses the phenomenon of ionizing radiations that naturally occur in the atmosphere. This technique relies on a unique physicochemical property of certain minerals (especially quartz and feldspar) that have an
imperfect structure and therefore retain radioactive elements in the natural environment. When these minerals are heated while a pot is being baked during the occupation of an archaeological site, for instance, the traps formed by their crystal structure are emptied and the clock is reset to zero.

Subsequently, the total flow rate of irradiation (paleodose) since the reset is calculated by heating the specimen once more, and this result is then compared to the annual input recorded by a dosimeter installed on the archaeological site where the object being dated was found. The calculation (age of the specimen = paleodose/annual dose) provides information about when the pottery pot was baked and, thereby, about the chronology of the archaeological occupation in which it was found.

Thermoluminescence is a technique that requires complex manipulation. To obtain a date for a single pottery sample, it is necessary to perform a laboratory fractionation of the clay mineral used in the manufacture of the pottery and prepare nearly 75 sub-samples; some of these are heated to release the level of thermoluminescence, while others receive a radiation dose to measure their sensitivity to radiation.

Thermoluminescence can replace radiocarbon dating to date events that occurred more than 50,000 years ago; it is used mainly for dating stone fireplaces, ceramics and fire remains.

More dating methods
The above five are the most common dating methods used in archeology, but for specific purposes other methods are also used, including:
Amino acid dating
Archaeomagnetic dating
Argon dating
K-Ar dating
Uranium-lead dating
Samarium-neodymium dating
Rubidium–strontium dating
Uranium-thorium dating
Fission track dating
Iodine-129 dating
Lead dating
Rehydroxylation dating
Cementochronology dating
Wiggle matching
Amazing accuracy

Meticulous science

Archaeologists don't just look at objects and give their opinions of age. Dating is done carefully with scientific instruments, computer analysis, professional standards and peer review.

Big advancements

As in all fields of science, there have been amazing advancements in knowledge, databases, chemical analysis, imaging, instrumentation and computer analysis in archaeology over the past 30 years. The quantity of specimens and data collected is exploding. Clear pictures of the past are rapidly emerging.

Cross-test verification

It is now possible to have greater confidence in dating because there are so many tests and so much data. Testing can be done on the same object with different methods, and accuracy is assured when all reveal approximately the same age.

Arial radar imaging

Arial imaging is not a way of determining age but is a way to identify high potential excavation sites that have an abundance of structures, fossils and artifacts. This results in more and better sites and objects to study, in less time and less cost.

CT Scans

CT scans are used to X-ray blocks of sandstone and limestone to see if what's inside is worth chipping out and to help avoid damage in the process. This improves efficiency and quality.